20 research outputs found

    Effective and Efficient Similarity Index for Link Prediction of Complex Networks

    Get PDF
    Predictions of missing links of incomplete networks like protein-protein interaction networks or very likely but not yet existent links in evolutionary networks like friendship networks in web society can be considered as a guideline for further experiments or valuable information for web users. In this paper, we introduce a local path index to estimate the likelihood of the existence of a link between two nodes. We propose a network model with controllable density and noise strength in generating links, as well as collect data of six real networks. Extensive numerical simulations on both modeled networks and real networks demonstrated the high effectiveness and efficiency of the local path index compared with two well-known and widely used indices, the common neighbors and the Katz index. Indeed, the local path index provides competitively accurate predictions as the Katz index while requires much less CPU time and memory space, which is therefore a strong candidate for potential practical applications in data mining of huge-size networks.Comment: 8 pages, 5 figures, 3 table

    Collaborative filtering based on multi-channel diffusion

    Get PDF
    In this paper, by applying a diffusion process, we propose a new index to quantify the similarity between two users in a user-object bipartite graph. To deal with the discrete ratings on objects, we use a multi-channel representation where each object is mapped to several channels with the number of channels being equal to the number of different ratings. Each channel represents a certain rating and a user having voted an object will be connected to the channel corresponding to the rating. Diffusion process taking place on such a user-channel bipartite graph gives a new similarity measure of user pairs, which is further demonstrated to be more accurate than the classical Pearson correlation coefficient under the standard collaborative filtering framework.Comment: 9 pages, 3 figure

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    A Metabolomic Signature of Obesity and Risk of Colorectal Cancer: Two Nested Case–Control Studies

    No full text
    Obesity is a leading contributor to colorectal cancer (CRC) risk, but the metabolic mechanisms linking obesity to CRC are not fully understood. We leveraged untargeted metabolomics data from two 1:1 matched, nested case–control studies for CRC, including 223 pairs from the US Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial and 190 pairs from a prospective Chinese cohort. We explored serum metabolites related to body mass index (BMI), constructed a metabolomic signature of obesity, and examined the association between the signature and CRC risk. In total, 72 of 278 named metabolites were correlated with BMI after multiple testing corrections (p FDR < 0.05). The metabolomic signature was calculated by including 39 metabolites that were independently associated with BMI. There was a linear positive association between the signature and CRC risk in both cohorts (p for linear < 0.05). Per 1-SD increment of the signature was associated with 38% (95% CI: 9–75%) and 28% (95% CI: 2–62%) higher risks of CRC in the US and Chinese cohorts, respectively. In conclusion, we identified a metabolomic signature for obesity and demonstrated the association between the signature and CRC risk. The findings offer new insights into the underlying mechanisms of CRC, which is critical for improved CRC prevention

    LHP1-mediated epigenetic buffering of subgenome diversity and defense responses confers genome plasticity and adaptability in allopolyploid wheat

    No full text
    Abstract Polyploidization is a major driver of genome diversification and environmental adaptation. However, the merger of different genomes may result in genomic conflicts, raising a major question regarding how genetic diversity is interpreted and regulated to enable environmental plasticity. By analyzing the genome-wide binding of 191 trans-factors in allopolyploid wheat, we identified like heterochromatin protein 1 (LHP1) as a master regulator of subgenome-diversified genes. Transcriptomic and epigenomic analyses of LHP1 mutants reveal its role in buffering the expression of subgenome-diversified defense genes by controlling H3K27me3 homeostasis. Stripe rust infection releases latent subgenomic variations by eliminating H3K27me3-related repression. The simultaneous inactivation of LHP1 homoeologs by CRISPR–Cas9 confers robust stripe rust resistance in wheat seedlings. The conditional repression of subgenome-diversified defenses ensures developmental plasticity to external changes, while also promoting neutral-to-non-neutral selection transitions and adaptive evolution. These findings establish an LHP1-mediated buffering system at the intersection of genotypes, environments, and phenotypes in polyploid wheat. Manipulating the epigenetic buffering capacity offers a tool to harness cryptic subgenomic variations for crop improvement
    corecore